Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoexcited carrier diffusion dependence of differential reflection dynamics in InAsxP1-x/InP (x ≤ 0.35) strained-multiple-quantum wells

Identifieur interne : 002369 ( Chine/Analysis ); précédent : 002368; suivant : 002370

Photoexcited carrier diffusion dependence of differential reflection dynamics in InAsxP1-x/InP (x ≤ 0.35) strained-multiple-quantum wells

Auteurs : RBID : Pascal:98-0113733

Descripteurs français

English descriptors

Abstract

Using the pump-probe technique, we have observed time-resolved differential reflection in InAsxP1-x/InP (x ≤ 0.35) strained-multiple-quantum wells (SMQWs) and also examined the photoluminescence spectra for the samples studied. The experimental results show that barrier height, interface roughness and quantum-well width influence strongly the differential reflection dynamics. From the experimental results, we have demonstrated that photoexcited carrier diffusion in cap layer and barriers along the direction perpendicular to the sample surface plays a dominant role in determining the differential reflection dynamics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:98-0113733

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoexcited carrier diffusion dependence of differential reflection dynamics in InAs
<sub>x</sub>
P
<sub>1-x</sub>
/InP (x ≤ 0.35) strained-multiple-quantum wells</title>
<author>
<name sortKey="Zhao, Y G" uniqKey="Zhao Y">Y.-G. Zhao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Mesoscopic Physics Laboratory, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Laboratory for Superlattices and Microstructures</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Qin, Y D" uniqKey="Qin Y">Y.-D. Qin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Mesoscopic Physics Laboratory, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Laboratory for Superlattices and Microstructures</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, X L" uniqKey="Huang X">X.-L. Huang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Mesoscopic Physics Laboratory, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Laboratory for Superlattices and Microstructures</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, J J" uniqKey="Wang J">J.-J. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Mesoscopic Physics Laboratory, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Laboratory for Superlattices and Microstructures</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zou, Y H" uniqKey="Zou Y">Y.-H. Zou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Mesoscopic Physics Laboratory, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Laboratory for Superlattices and Microstructures</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Masut, R A" uniqKey="Masut R">R. A. Masut</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Groupe de Recherche en Physique et Technologie des Couches Minces (GCM) et Département de Genie Physique, Ecole Polytechnique de Montreal, C.P. 6079, Succ. Centre-Ville</s1>
<s2>Montreal, Quebec H3C 3A7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Montreal, Quebec H3C 3A7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beaudoin, M" uniqKey="Beaudoin M">M. Beaudoin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Groupe de Recherche en Physique et Technologie des Couches Minces (GCM) et Département de Genie Physique, Ecole Polytechnique de Montreal, C.P. 6079, Succ. Centre-Ville</s1>
<s2>Montreal, Quebec H3C 3A7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Montreal, Quebec H3C 3A7</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">98-0113733</idno>
<date when="1998">1998</date>
<idno type="stanalyst">PASCAL 98-0113733 INIST</idno>
<idno type="RBID">Pascal:98-0113733</idno>
<idno type="wicri:Area/Main/Corpus">017916</idno>
<idno type="wicri:Area/Main/Repository">016A41</idno>
<idno type="wicri:Area/Chine/Extraction">002369</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1098</idno>
<title level="j" type="abbreviated">Solid state commun.</title>
<title level="j" type="main">Solid state communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barrier height</term>
<term>Binary compounds</term>
<term>Carrier mobility</term>
<term>Chemical composition</term>
<term>Differential method</term>
<term>Diffusion</term>
<term>Excited states</term>
<term>Experimental study</term>
<term>Indium Arsenides phosphides</term>
<term>Indium phosphides</term>
<term>Photoluminescence</term>
<term>Quantum wells</term>
<term>Reflection spectrum</term>
<term>Roughness</term>
<term>Semiconductor materials</term>
<term>Strains</term>
<term>Ternary compounds</term>
<term>Thickness</term>
<term>Time resolution</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mobilité porteur charge</term>
<term>Méthode différentielle</term>
<term>Indium phosphure</term>
<term>Déformation mécanique</term>
<term>Photoluminescence</term>
<term>Spectre réflexion</term>
<term>Rugosité</term>
<term>Puits quantique</term>
<term>Diffusion(transport)</term>
<term>Epaisseur</term>
<term>Hauteur barrière</term>
<term>Résolution temporelle</term>
<term>Etat excité</term>
<term>Composition chimique</term>
<term>Indium Phosphoarséniure</term>
<term>Matériau semiconducteur</term>
<term>Composé binaire</term>
<term>Composé ternaire</term>
<term>7866F</term>
<term>7340K</term>
<term>Etude expérimentale</term>
<term>InAsxP1-x</term>
<term>As In P</term>
<term>InP</term>
<term>In P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using the pump-probe technique, we have observed time-resolved differential reflection in InAs
<sub>x</sub>
P
<sub>1-x</sub>
/InP (x ≤ 0.35) strained-multiple-quantum wells (SMQWs) and also examined the photoluminescence spectra for the samples studied. The experimental results show that barrier height, interface roughness and quantum-well width influence strongly the differential reflection dynamics. From the experimental results, we have demonstrated that photoexcited carrier diffusion in cap layer and barriers along the direction perpendicular to the sample surface plays a dominant role in determining the differential reflection dynamics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>105</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoexcited carrier diffusion dependence of differential reflection dynamics in InAs
<sub>x</sub>
P
<sub>1-x</sub>
/InP (x ≤ 0.35) strained-multiple-quantum wells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHAO (Y.-G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>QIN (Y.-D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUANG (X.-L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANG (J.-J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZOU (Y.-H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MASUT (R. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BEAUDOIN (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Mesoscopic Physics Laboratory, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Laboratory for Superlattices and Microstructures</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Groupe de Recherche en Physique et Technologie des Couches Minces (GCM) et Département de Genie Physique, Ecole Polytechnique de Montreal, C.P. 6079, Succ. Centre-Ville</s1>
<s2>Montreal, Quebec H3C 3A7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>393-397</s1>
</fA20>
<fA21>
<s1>1998</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000078198580080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1998 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>98-0113733</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using the pump-probe technique, we have observed time-resolved differential reflection in InAs
<sub>x</sub>
P
<sub>1-x</sub>
/InP (x ≤ 0.35) strained-multiple-quantum wells (SMQWs) and also examined the photoluminescence spectra for the samples studied. The experimental results show that barrier height, interface roughness and quantum-well width influence strongly the differential reflection dynamics. From the experimental results, we have demonstrated that photoexcited carrier diffusion in cap layer and barriers along the direction perpendicular to the sample surface plays a dominant role in determining the differential reflection dynamics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode différentielle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Differential method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método diferencial</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Strains</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Hauteur barrière</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Barrier height</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Résolution temporelle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Time resolution</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etat excité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Excited states</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Indium Phosphoarséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium Arsenides phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fosfoarseniuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Matériau semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>82</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InAsxP1-x</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As In P</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>95</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>81</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>81</s5>
</fC07>
<fN21>
<s1>068</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002369 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 002369 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:98-0113733
   |texte=   Photoexcited carrier diffusion dependence of differential reflection dynamics in InAsxP1-x/InP (x ≤ 0.35) strained-multiple-quantum wells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024